表格数据通常包含私人和重要信息;因此,必须在与他人共享之前采取预防措施。尽管已经提出了几种方法(例如,差异隐私和K-匿名性)以防止信息泄漏,但近年来,表格数据合成模型已变得流行,因为它们可以在数据实用程序和隐私之间进行易于权衡。但是,最近的研究表明,图像数据的生成模型容易受到会员推理攻击的影响,这可以确定是否使用给定记录来训练受害者合成模型。在本文中,我们在表格数据合成的背景下研究了成员推理攻击。我们在两个攻击方案(即一个黑色框和一个白盒攻击)下对4个最先进的表格数据合成模型进行实验,并发现成员推理攻击会严重危害这些模型。下一步,我们进行实验,以评估两种流行的差异深度学习训练算法DP-SGD和DP-GAN如何能够保护模型免受攻击。我们的主要发现是,两种算法都可以通过牺牲生成质量来减轻这种威胁。代码和数据可用:https://github.com/jayoungkim408/mia
translated by 谷歌翻译
受微分方程式启发的深度学习是最近的研究趋势,它标志着许多机器学习任务的最先进的表现。其中,具有神经控制的微分方程(NCDE)的时间序列建模被认为是突破。在许多情况下,基于NCDE的模型不仅比复发性神经网络(RNN)提供了更好的准确性,而且还可以处理不规则的时间序列。在这项工作中,我们通过重新设计其核心部分,即从离散的时间序列输入产生连续路径来增强NCDES。 NCDE通常使用插值算法将离散的时间序列样本转换为连续路径。但是,我们向i)提出建议,使用编码器解码器体系结构生成另一个潜在的连续路径,该架构对应于NCDE的插值过程,即我们的基于神经网络的插值与现有的显式插值相对于现有的显式插值以及II)解码器的外推超出了原始数据的时域的外推。因此,我们的NCDE设计可以同时使用插值和外推信息进行下游机器学习任务。在我们使用5个现实世界数据集和12个基线的实验中,我们的外推和基于插值的NCDES超过了非平凡的边缘的现有基线。
translated by 谷歌翻译
Question Answering (QA) is a task that entails reasoning over natural language contexts, and many relevant works augment language models (LMs) with graph neural networks (GNNs) to encode the Knowledge Graph (KG) information. However, most existing GNN-based modules for QA do not take advantage of rich relational information of KGs and depend on limited information interaction between the LM and the KG. To address these issues, we propose Question Answering Transformer (QAT), which is designed to jointly reason over language and graphs with respect to entity relations in a unified manner. Specifically, QAT constructs Meta-Path tokens, which learn relation-centric embeddings based on diverse structural and semantic relations. Then, our Relation-Aware Self-Attention module comprehensively integrates different modalities via the Cross-Modal Relative Position Bias, which guides information exchange between relevant entities of different modalities. We validate the effectiveness of QAT on commonsense question answering datasets like CommonsenseQA and OpenBookQA, and on a medical question answering dataset, MedQA-USMLE. On all the datasets, our method achieves state-of-the-art performance. Our code is available at http://github.com/mlvlab/QAT.
translated by 谷歌翻译
Generally, regularization-based continual learning models limit access to the previous task data to imitate the real-world setting which has memory and privacy issues. However, this introduces a problem in these models by not being able to track the performance on each task. In other words, current continual learning methods are vulnerable to attacks done on the previous task. We demonstrate the vulnerability of regularization-based continual learning methods by presenting simple task-specific training time adversarial attack that can be used in the learning process of a new task. Training data generated by the proposed attack causes performance degradation on a specific task targeted by the attacker. Experiment results justify the vulnerability proposed in this paper and demonstrate the importance of developing continual learning models that are robust to adversarial attack.
translated by 谷歌翻译
合并个人喜好对于高级机器翻译任务至关重要。尽管机器翻译最近进步,但正确反映个人风格仍然是一项艰巨的任务。在本文中,我们引入了一个个性化的自动后编辑框架来应对这一挑战,该挑战有效地产生了考虑不同个人行为的句子。为了构建此框架,我们首先收集后编辑数据,该数据表示来自Live Machine Translation系统的用户偏好。具体而言,现实世界的用户输入源句子进行翻译,并根据用户的首选样式编辑机器翻译的输出。然后,我们提出了一个模型,该模型结合了APE框架上的歧视器模块和特定于用户的参数。实验结果表明,该方法的表现优于四个不同指标(即BLEU,TER,YISI-1和人类评估)的其他基线模型。
translated by 谷歌翻译
非本地(NL)块是一个流行的模块,它展示了模拟全局上下文的功能。但是,NL块通常具有沉重的计算和记忆成本,因此将块应用于高分辨率特征图是不切实际的。在本文中,为了研究NL块的功效,我们经验分析了输入特征向量的大小和方向是否正确影响向量之间的注意力。结果表明,SoftMax操作的效率低下,该操作通常用于将NL块的注意力图归一化。通过软磁性操作归一化的注意力图极大地依赖于关键向量的大小,并且如果删除幅度信息,则性能将退化。通过用缩放系数替换SoftMax操作,我们证明了CIFAR-10,CIFAR-100和TININE-IMAGENET的性能提高。此外,我们的方法显示了嵌入通道减少和嵌入重量初始化的鲁棒性。值得注意的是,我们的方法在没有额外的计算成本的情况下使多头注意力可用。
translated by 谷歌翻译
对联合国可持续发展目标的进展(SDGS)因关键环境和社会经济指标缺乏数据而受到阻碍,其中历史上有稀疏时间和空间覆盖率的地面调查。机器学习的最新进展使得可以利用丰富,频繁更新和全球可用的数据,例如卫星或社交媒体,以向SDGS提供洞察力。尽管有希望的早期结果,但到目前为止使用此类SDG测量数据的方法在很大程度上在不同的数据集或使用不一致的评估指标上进行了评估,使得难以理解的性能是改善,并且额外研究将是最丰富的。此外,处理卫星和地面调查数据需要域知识,其中许多机器学习群落缺乏。在本文中,我们介绍了3个SDG的3个基准任务的集合,包括与经济发展,农业,健康,教育,水和卫生,气候行动和陆地生命相关的任务。 15个任务中的11个数据集首次公开发布。我们为Acceptandbench的目标是(1)降低机器学习界的进入的障碍,以促进衡量和实现SDGS; (2)提供标准基准,用于评估各种SDG的任务的机器学习模型; (3)鼓励开发新颖的机器学习方法,改进的模型性能促进了对SDG的进展。
translated by 谷歌翻译